One Method to Rule Them All: Map.merge()

 I don’t often explain a single method in JDK, but when I do, it’s about Map.merge(). This is probably the most versatile operation in the key-value universe. But it’s also rather obscure and rarely used.

merge() can be explained as follows: it either puts new value under the given key (if absent) or updates existing key with a given value (UPSERT). Let’s start with the most basic example: counting unique word occurrences. Pre-Java 8 (read: pre-2014!) code was quite messy and the essence was lost in implementation details:

var map = new HashMap<String, Integer>();
words.forEach(word -> {
    var prev = map.get(word);
    if (prev == null) {
        map.put(word, 1);
    } else {
        map.put(word, prev + 1);

However, it works, and for the given input, it produces the desired output:

var words = List.of("Foo", "Bar", "Foo", "Buzz", "Foo", "Buzz", "Fizz", "Fizz");
{Bar=1, Fizz=2, Foo=3, Buzz=2}

OK, but let’s try to refactor it to avoid conditional logic:

words.forEach(word -> {
    map.putIfAbsent(word, 0);
    map.put(word, map.get(word) + 1);

That’s nice!

putIfAbsent()  is a necessary evil; otherwise, the code breaks on the first occurrence of a previously unknown word. Also, I find map.get(word) insidemap.put() to be a bit awkward. Let’s get rid of it as well!

words.forEach(word -> {
    map.putIfAbsent(word, 0);
    map.computeIfPresent(word, (w, prev) -> prev + 1);

computeIfPresent() invokes the given transformation only if the key in question (word) exists. Otherwise, it does nothing. We made sure the key exists by initializing it to zero, so incrementation always works. Can we do better? Well, we can cut the extra initialization, but I wouldn’t recommend it:

words.forEach(word ->
        map.compute(word, (w, prev) -> prev != null ? prev + 1 : 1)

compute ()is likecomputeIfPresent(), but it is invoked irrespective to the existence of the given key. If the value for the key does not exist, the prevargument is null. Moving a simpleif to a ternary expression hidden in lambda is far from optimal. This is where themerge()operator shines. Before I show you the final version, let’s see a slightly simplified default implementation ofMap.merge():

default V merge(K key, V value, BiFunction<V, V, V> remappingFunction) {
    V oldValue = get(key);
    V newValue = (oldValue == null) ? value :
               remappingFunction.apply(oldValue, value);
    if (newValue == null) {
    } else {
        put(key, newValue);
    return newValue;

The code snippet is worth a thousand words. merge() works in two scenarios. If the given key is not present, it simply becomes put(key, value). However, if the said key already holds some value, our remappingFunction may merge (duh!) the old and the one. This function is free to:

  • overwrite old value by simply returning the new one: (old, new) -> new
  • keep the old value by simply returning the old one: (old, new) -> old
  • somehow merge the two, e.g.: (old, new) -> old + new
  • or even remove old value: (old, new) -> null

As you can see, merge() is quite versatile. So, how does our academic problem look like with merge()? It’s quite pleasing:

words.forEach(word ->
        map.merge(word, 1, (prev, one) -> prev + one)

You can read it as follows: put 1 under the word key if absent; otherwise, add 1 to the existing value. I named one of the parameters “ one” because in our example it’s always…  1.

Sadly, remappingFunctiontakes two parameters, where the second one is the value we are about to upsert (insert or update). Technically, we know this value already, so (word, 1, prev -> prev + 1)  would be much easier to digest. But there’s no such API.

All right, but is merge() really useful? Imagine you have an account operation (constructor, getters, and other useful properties omitted):

class Operation {
    private final String accNo;
    private final BigDecimal amount;

And a bunch of operations for different accounts:

var operations = List.of(
    new Operation("123", new BigDecimal("10")),
    new Operation("456", new BigDecimal("1200")),
    new Operation("123", new BigDecimal("-4")),
    new Operation("123", new BigDecimal("8")),
    new Operation("456", new BigDecimal("800")),
    new Operation("456", new BigDecimal("-1500")),
    new Operation("123", new BigDecimal("2")),
    new Operation("123", new BigDecimal("-6.5")),
    new Operation("456", new BigDecimal("-600"))

We would like to compute balance (total over operations’ amounts) for each account. Without merge(), this is quite cumbersome:

var balances = new HashMap<String, BigDecimal>();
operations.forEach(op -> {
    var key = op.getAccNo();
    balances.putIfAbsent(key, BigDecimal.ZERO);
    balances.computeIfPresent(key, (accNo, prev) -> prev.add(op.getAmount()));

But with a little help of merge():

operations.forEach(op ->
        balances.merge(op.getAccNo(), op.getAmount(), 
                (soFar, amount) -> soFar.add(amount))

Do you see a method reference opportunity here?

operations.forEach(op ->
        balances.merge(op.getAccNo(), op.getAmount(), BigDecimal::add)

I find this astoundingly readable. For each operation, add the given amount to the given accNo. The results are as expected:

{123=9.5, 456=-100}


Map.merge() shines even brighter when you realize it’s properly implemented inConcurrentHashMap. This means we can atomically perform an insert-or-update operation — single line and thread-safe.

ConcurrentHashMap is obviously thread-safe, but not across many operations, e.g. get() and thenput(). However, merge() makes sure no updates are lost.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s